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Abstract
Traditionally, parallel supercomputing has focused on the
inner kernel of scientific simulations: the solver. The
front and back ends of the simulation pipeline—problem
description and interpretation of the output—have taken a
back seat to the solver when it comes to attention paid
to scalability and performance, and are often relegated to
offline, sequential computation. As the largest simulations
move beyond the realm of the terascale and into the petas-
cale, this decomposition in tasks and platforms becomes
increasingly untenable. We propose an end-to-end approach
in which all simulation components—meshing, partitioning,
solver, and visualization—are tightly coupled and execute
in parallel with shared data structures and no intermediate
I/O. We present our implementation of this new approach
in the context of octree-based finite element simulation of
earthquake ground motion. Performance evaluation on up
to 2048 processors demonstrates the ability of the end-to-
end approach to overcome the scalability bottlenecks of the
traditional approach.

1 Introduction
The traditional focus of parallel supercomputing has been
on the inner kernel of scientific simulations: the solver,
a term we use generically to refer to solution of (numer-
ical approximations of) the governing partial differential,
ordinary differential, algebraic, integral, or particle equa-
tions. Great effort has gone into the design, evaluation,
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and performance optimization of scalable parallel solvers,
and previous Gordon Bell awards have recognized these
achievements. However, the front and back ends of the
simulation pipeline—problem description and interpretation
of the output—have taken a back seat to the solver when
it comes to attention paid to scalability and performance.
This of course makes sense: solvers are usually the most
cycle-consuming component, which makes them a natural
target for performance optimization efforts for successive
generations of parallel architecture. The front and back ends,
on the other hand, often have sufficiently small memory foot-
prints and compute requirements that they can be relegated
to offline, sequential computation.

However as scientific simulations move beyond the
realm of the terascale and into the petascale, this decomposi-
tion in tasks and platforms becomes increasingly untenable.
In particular, multiscale three-dimensional PDE simulations
often require variable-resolution unstructured meshes to effi-
ciently resolve the different scales of behavior. The problem
description phase can then require generation of a massive
unstructured mesh; the output interpretation phase then
involves unstructured-mesh volume rendering of even larger
size. As the largest unstructured mesh simulations move into
the hundred million to billion element range, the memory
and compute requirements for mesh generation and volume
rendering preclude the use of sequential computers. On the
other hand, scalable parallel algorithms and implementations
for large-scale mesh generation and unstructured mesh vol-
ume visualization are significantly more difficult than their
sequential counterparts.1

We have been working over the last several years to
develop methods to address some of these front-end and
back-end performance bottlenecks, and have deployed them
in support of large-scale simulations of earthquakes [3].
For the front end, we have developed a computational
database system that can be used to generate unstructured
hexahedral octree-based meshes with billions of elements
on workstations with sufficiently large disks [26, 27, 28, 30].
For the back end, we have developed special I/O strategies
that effectively hide I/O costs when transferring individual
time step data to memory for rendering calculations [32],

1For example, in a report identifying the prospects of scalability
of a variety of parallel algorithms to petascale architectures [22],
mesh generation and associated load balancing are categorized as
Class 2—“scalable provided significant research challenges are
overcome.”



which themselves run in parallel and are highly scalable
[16, 17, 19, 32]. Figure 1 illustrates the simulation pipeline
in the context of our earthquake modeling problem, and,
in particular, the sequence of files that are read and written
between components.
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Figure 1: Traditional simulation pipeline.

However, despite our best efforts at devising scalable
algorithms and implementations for the meshing, solver,
and visualization components, as our resolution and fidelity
requirements have grown to target hundred million to multi-
billion element simulations, significant bottlenecks remain
in storing, transferring, and reading/writing multi-terabyte
files between these components. In particular, I/O of multi-
terabyte files remains a pervasive performance bottleneck on
parallel computers, to the extent that the offline approach
to the meshing–partitioning–solver–visualization simulation
pipeline becomes intractable for billion-unknown unstruc-
tured mesh simulations. Ultimately, beyond scalability and
I/O concerns, the biggest limitation of the offline approach
is its inability to support interactive visualization of the
simulation: the ability to debug and monitor the simulation
at runtime based on volume-rendered visualizations becomes
increasingly crucial as problem size increases.

Thus, we are led to conclude that in order to (1)
deliver necessary performance, scalability, and portability
for ultrascale unstructured mesh computations, (2) avoid
unnecessary bottlenecks associated with multi-terabyte I/O,
and (3) support runtime visualization steering, we must seek
an end-to-end solution to the meshing–partitioning–solver–
visualization parallel simulation pipeline. The key idea is to
replace the traditional, cumbersome file interface with a scal-
able, parallel, runtime system that supports the simulation
pipeline in two ways: (1) providing a common foundation
on top of which all simulation components operate, and
(2) serving as a medium for sharing data among simulation
components.

Following this design principle, we have implemented a
simulation system named Hercules that targets unstructured
octree-based finite element PDE simulations running on
multi-thousand processor supercomputers. Figure 2 illus-
trates the new computing method. All simulation compo-
nents (i.e. meshing, partitioning, solver, and visualization)
are implemented on top of, and operate on, a unified parallel
octree data structure. There is only one executable (MPI

code). All components are tightly coupled and execute on
the same set of processors. The only inputs are a description
of the spatial variation of the PDE coefficients (a material
property database for a 3D domain of interest), a simula-
tion specification (earthquake source definition, maximum
frequency to be resolved, mesh nodes per wavelength, etc.),
and a visualization configuration (image resolution, transfer
function, view point, etc.); the only outputs are lightweight
jpeg-formatted image frames generated as the simulation
runs.2 There is no other file I/O.
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Figure 2: Online, end-to-end simulation pipeline.

The relative simplicity of the parallel octree structure
has certainly facilitated the implementation of Hercules.
Nevertheless, additional mechanisms on top of the tree
structure are needed to support different scalable algorithms
within the Hercules framework. In particular, we need to
associate unknowns with mesh nodes, which correspond to
the vertices of the octants in a parallel octree.3 The problem
of how to handle octree mesh nodes alone represents a
nontrivial challenge to meshing and solving. Furthermore,
in order to provide unified data access services throughout
the simulation pipeline, a flexible interface to the underlying
parallel octree has to be designed and exported such that all
components can efficiently share simulation data.

It is worth noting that while the only post-processing
component we have incorporated in Hercules is volume
rendering visualization, there should be no technical dif-
ficulty in adding other components. We have chosen 3D
volume rendering over others mainly because it is one of the
most demanding back ends in terms of algorithm complexity
and difficulty of scalability. By demonstrating that online,
integrated, highly parallel visualization is achievable, we
establish the viability of the proposed end-to-end approach
and argue that it can be implemented for a wide variety of
other simulation pipeline configurations.

We have assessed the performance of Hercules on the
Alpha EV68-based terascale system at the Pittsburgh Super-
computing Center for modeling earthquake ground motion
in heterogeneous basins. Preliminary performance and scal-
ability results (Section 4) show:

• Fixed-size scalability of the entire end-to-end simu-
lation pipeline from 128 to 2048 processors at 64%

2Optionally, we can write out the volume solution at each time
step if necessary for future post-processing—though we are rarely
interested in preserving the entire volume of output, and instead
prefer to operate on it directly in-situ.

3In contrast, other parallel octree-based applications such as N-
body simulations do not need to manipulate octants’ vertices.
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overall parallel efficiency for 134 million mesh node
simulations

• Isogranular scalability of the entire end-to-end simu-
lation pipeline from 1 to 748 processors at combined
81% parallel efficiency for 534 million mesh node
simulations

• Isogranular scalability of the meshing, partitioning,
and solver components at 60% parallel efficiency on
2000 processors for 1.37 billion node simulations

Already we are able to demonstrate—we believe for
the first time—scalability to 2048 processors of an entire
end-to-end simulation pipeline, from mesh generation to
wave propagation to scientific visualization, using a unified,
tightly-coupled, online, minimal I/O approach.

2 Octree-based finite element method
Octrees have been used as a basis for finite element approx-
imation since at least the early 90s [31]. Our interest in
octrees stems from their ability to adapt to the wavelengths
of propagating seismic waves while maintaining a regular
shape of finite elements. Here, leaves associated with the
lowest level of the octree are identified with trilinear hexahe-
dral finite elements and used for a Galerkin approximation
of a suitable weak form of the elastic wave propagation
equation. The hexahedra are recursively subdivided into
8 elements until a local refinement criterion is satisfied.
For seismic wave propagation in heterogeneous media, the
criterion is that the longest element edge should be such that
there result at least p nodes per wavelength, as determined by
the local shear wave velocity β and the maximum frequency
of interest fmax . In other words, hmax < β

pfmax

. For trilinear
hexahedra and taking into account the accuracy with which
we know typical basin properties, we usually take p = 10.
An additional condition that drives mesh refinement is that
the element size not differ by more than a factor of two
across neighboring elements (the octree is then said to be
balanced). Note that the octree does not explicitly represent
material interfaces within the earth, and instead accepts O(h)
error in representing them implicitly. This is usually justified
for earthquake modeling since the location of interfaces is
known at best to the order of the seismic wavelength, i.e. to
O(h). If warranted, higher-order accuracy in representing
arbitrary interfaces can be achieved by local adjustment of
the finite element basis (e.g., [31]).

Figure 3 depicts the octree mesh (and its 2D counterpart,
a quadtree). The left drawing illustrates a factor-of-two
edge length difference (a legal refinement) and a factor-of-
four difference (an illegal refinement). Unless additional
measures are taken, so-called hanging nodes that separate
different levels of refinement (indicated by solid circles and
the subscript d in the figure) result in a possibly discontinu-
ous field approximation, which can destroy the convergence
properties of the Galerkin method. Several possibilities
exist to remedy this situation by enforcing continuity of
displacement field across the interface either strongly (e.g.,
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Figure 3: Quadtree- and octree-based meshes.

by construction of special transition elements) or weakly
(e.g., via mortar elements or discontinuous Galerkin approx-
imation). The simplest technique is to enforce continuity
by algebraic constraints that require the displacement of
the hanging node be the average of the displacement of
its anchored neighbors (indicated by open circles and the
subscript a). As illustrated in Figure 3, the displacement
of an edge hanging node, ud, should be the average of its
two edge neighbors uia and uja, and the displacement of a
face hanging node, ûd, should be the average of its four face
neighbors uia, uja, uka, and ula. Efficient implementation
of these algebraic constraints will be discussed in the next
section. As evident from the figure, when the octree is
balanced, an anchored node cannot also be a hanging node.

The previous version of our earthquake modeling code
was based on an unstructured mesh data structure and linear
tetrahedral finite elements [6, 7]. The present octree-based
method [8] has several important advantages over that
approach:

• The octree meshes are much more easily generated
than general unstructured tetrahedral meshes, partic-
ularly when the number of elements increases above
50 million.

• The hexahedra provide relatively greater accuracy per
node (the asymptotic convergence rate is unchanged,
but the constant is typically improved over tetrahedral
approximation).

• The hexahedra all have the same form of the element
stiffness matrices, scaled simply by element size and
material properties (which are stored as vectors), and
thus no matrix storage is required at all. This results
in a substantial decrease in required memory—about
an order of magnitude, compared to our node-based
tetrahedral code.

• Because of the matrix-free implementation, (stiffness)
matrix-vector products are carried out at the element
level. This produces much better cache utilization by
relegating the work that requires indirect addressing
(and is memory bandwidth-limited) to vector opera-
tions, and recasting the majority of the work of the
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matrix-vector product as local element-wise dense
matrix computations. The result is a significant boost
in performance.

These features permit earthquake simulations to substan-
tially higher frequencies and lower resolved shear wave
velocities than heretofore possible. In the next section, we
describe the octree-based discretization and solution of the
elastic wave equation.

2.1 Wave propagation model. We model seismic wave
propagation in the earth via Navier’s equations of elasto-
dynamics. Let u represent the vector field of the three
displacement components; λ and µ the Lamé moduli and
ρ the density distribution; b a time-dependent body force
representing the seismic source; t the surface traction vector;
andΩ an open bounded domain in R

3 with free surface ΓFS ,
truncation boundary ΓAB , and outward unit normal to the
boundary n. The initial–boundary value problem is then
written as:

ρ ü − ∇ ·
[
µ
(
∇u + ∇u

T

)
+ λ(∇ · u)I

]
= b in Ω× (0, T ) ,

n × n × t = n × n × u̇
√
ρµ on ΓAB × (0, T ) ,

n · t = n · u̇
√
ρ(λ+ 2µ) on ΓAB × (0, T ) ,

(1)

t = 0 on ΓFS × (0, T ) ,

u = 0 in Ω× {t = 0} ,

u̇ = 0 in Ω× {t = 0} ,

With this model, p waves propagate with velocity α =√
(λ+ 2µ)/ρ, and s waves with velocity β =

√
µ/ρ. The

continuous form above does not include material attenuation,
which we introduce at the discrete level via a Rayleigh damp-
ing model. The vector b comprises a set of body forces that
equilibrate an induced displacement dislocation on a fault
plane, providing an effective representation of earthquake
rupture on the plane. For example, for a seismic excitation
idealized as a point source, b = −µvAMf(t)∇δ(x−ξ) [4].
In this expression, v is the average earthquake dislocation;
A the rupture area; M the (normalized) seismic moment
tensor, which depends on the orientation of the fault; f(t) the
(normalized) time evolution of the rupture; and ξ the source
location.

Since we model earthquakes within a portion of the
earth, we require appropriately positioned absorbing bound-
aries to account for the truncated exterior. For simplicity, in
(1) the absorbing boundaries are given as dashpots on ΓAB ,
which approximate the tangential and normal components
of the surface traction vector t with time derivatives of
corresponding components of the displacement vector.

Even though this absorbing boundary is approximate,
it is local in both space and time, which is particularly
important for large-scale parallel implementation. Finally,
we enforce traction-free conditions on the earth surface.

2.2 Octree discretization. We apply standard Galerkin
finite element approximation in space to the appropriate
weak form of the initial-boundary value problem (1). (The
rest of this section has been commented out to satisfy the
length requirement; it will be restored in the full paper.)

2.3 Temporal approximation. The time dimension
is discretized using central differences. (The rest of this
section has been commented out to satisfy the length require-
ment; it will be restored in the full paper.)

The combination of an octree-based wavelength-adaptive
mesh, piecewise trilinear Galerkin finite elements in space,
explicit central differences in time, constraints that enforce
continuity of the displacement approximation, and local-in-
space-and-time absorbing boundaries yields a second-order-
accurate in time and space method that is capable of scaling
up to the very large problem sizes that are required for high
resolution earthquake modeling.

3 An end-to-end approach
The octree-based finite element method just described can be
implemented using a traditional, offline, file-based approach
[3, 19, 26, 27, 32]. However, the inherent pitfalls, as outlined
in Section 1, cannot be eliminated unless we introduce a
major change in design principle.

Our new computing model thus follows an online, end-
to-end approach. We view different components of a simu-
lation pipeline as integral parts of a tightly-coupled parallel
runtime system, rather than individual stand-alone programs.
A number of technical difficulties emerge in the process of
implementing this new methodology within an octree-based
finite element simulation system. This section discusses sev-
eral fundamental issues to be resolved, outlines the interfaces
between simulation components, and presents a sketch of the
core algorithms.

Some of the techniques presented here are specific to the
target class of octree-based methods. On the other hand, the
design principles are more widely applicable; we hope they
will help accelerate the adoption of end-to-end approaches
to parallel supercomputing where applicable.

3.1 Fundamental issues. Below we discuss funda-
mental issues encountered in developing a scalable octree-
based finite element simulation system. The solutions pro-
vided are critical to efficient implementation of different
simulation components.

3.1.1 Organizing a parallel octree. The octree serves
as a natural choice for the backbone structure tying together
all add-on components (i.e., data structures and algorithms).
We distribute the octree among all processors to exploit
data parallelism. Each processor retains its local instance
of the underlying global octree. Conceptually, each local
instance is an octree by itself whose leaf octants are marked
as either local or remote, as shown in Figure 4(b)(c)(d). (For
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clarity, we use 2D quadtrees and quadrants in the figures and
examples.)

The best way to understand the construction of a local
instance on a particular processor is to imagine that there
exists a pointer-based, fully-grown, global octree (see Fig-
ure 4(a)). Every leaf octant of this tree is marked as local if
the processor needs to use the octant, for example, to map
it to a hexahedral element, or remote if otherwise. We then
apply an aggregation procedure to shrink the size of the tree.
The predicate of aggregation is that if eight sibling octants
are marked as remote, prune them off the tree and make
their parent a leaf octant, marked as remote. For example,
on PE 0, octants g, h, i, and j (which belong to PE 1) are
aggregated and their parent is marked as a remote leaf octant.
The shrunken tree thus obtained is the local instance on
the particular processor. Note that all internal octants—the
ancestors of leaf octants—are unmarked. They exist simply
because we need to maintain a pointer-based octree structure
on each processor.
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Figure 4: Parallel octree organization on 3 proces-
sors. Circles marked by l represent local leaf octants;
and those marked by r represent aggregated remote
leaf octants. (a) A global octree. (b)(c)(d) The local
instances on PE0, PE1 and PE2, respectively.

We partition a global octree among all processors with
a simple rule that each processor is a host for a contiguous
chunk of leaf octants in the pre-order traversal ordering. To
maintain consistency in the parallel octree, we also enforce
an invariant that a leaf octant, if marked as local on one
processor, should not be marked as local on any other
processors. Therefore, the local instance on one processor
differs from that on any other processor, though there may be
overlaps between local instances. For example, a leaf octant
marked as remote on one processor may actually correspond
to a subtree on another processor.

So far, we have used a shallow octree to illustrate how
to organize a parallel octree on 3 processors. In our simple
example, the idea of local instances may not appear to
be very useful. But in practice, a global octree can have
many levels and needs to be distributed among hundreds or
thousands of processors. In these cases, the local instance
method pays off because each processor allocates enough
memory to keep track of only its share of the leaf octants.

Due to massive memory requirements and redundant
computational costs, we never—and in fact, are unable to—
build a fully-grown global octree on a single processor and
then shrink the tree by aggregating remote octants as an
afterthought. Instead, local instances on different processors

grow and shrink dynamically in synergy at runtime to con-
serve memory and maintain a coherent global parallel octree.

3.1.2 Addressing an octant. In order to manipulate
octants in a distributed octree, we need to be able to identify
individual octants, for instance to support neighbor-finding
operations or data migrations.

The foundation of our addressing scheme is the linear
octree technique [1,13,14]. The basic idea of a linear octree
is to encode each octant with a scalar key called a locational
code that uniquely identifies the octant. Let us label each tree
edge with a binary directional code that distinguishes each
child of an internal octant. A locational code is obtained by
concatenating the directional codes on the path from the root
octant to a target octant [23]. To make all the locational
codes of equal length, we may need to pad zeroes to the
concatenated directional codes. Finally, we append the level
of the target octant to the bit-string to complete a locational
code. Figure 5 shows how to derive the locational code for
octant g, assuming the root octant is at level 0 and the lowest
level supported is 4.

a

c d m

e f k l

g h ji

b
00 01 10 11

00 01 10 11

00 01 10 11

Level 0

Level 1

Level 2

Level 3

: Interior octant : Leaf octant

append g’s level 
10010000

concatenate the directional 
codes 100100

pad 2 zeroes 
100100   00

011

(a) (b)

Figure 5: Deriving locational codes using a tree
structure. (a) A tree representation. (b) Deriving the
locational code for g.

The procedure just described assumes the existence of
a tree structure to assist with the derivation of a locational
code. Since we do not maintain a global octree structure, we
have devised an alternative way to compute the locational
codes. Figure 6 illustrates the idea. Instead of a tree
structure, we view an octree from a domain decomposition
perspective. A domain is a Cartesian coordinate space that
consists of a uniform grid of 2n × 2n indivisible pixels. To
compute the locational code of octant g, we first interleave
the bits of the coordinate of its lower left pixel to produce
the so-called Morton code [21]. Then we append g’s level to
compose the locational code.

It can be verified that the two methods of deriving
locational codes are equivalent and produce the same result.
The second method, though, allows us to compute a globally
unique address by simple local bit operations.

3.1.3 Locating an octant. Given the locational code
of an octant, we need to locate the octant in a distributed
environment. That is, we need to find out which processor
hosts a given octant. Whether we can efficiently locate
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Figure 6: Computing locational codes without us-
ing a tree structure. (a) A domain representation. (b)
Computing the locational code for g.

an octant directly affects the performance and scalability
of our system. We have developed a simple but powerful
technique based on a locational code interval table to solve
this problem.

The basis of our solution is a simple fact: the pre-order
traversal of the leaf octants produces the same ordering as
the ascending locational code ordering. The dotted lines
in Figure 5(a) and Figure 6(a) illustrate the two identical
orderings, respectively. Since we assign to each processor
a contiguous chunk of leaf octants in pre-order traversal
ordering (as explained in Section 3.1.1), we have effectively
partitioned the locational code range in its ascending order.
Each processor hosts a range of ascending locational codes
that does not overlap with others.

Accordingly, we implement a locational interval table as
an array that maps processor ids to locational codes. Each
element of the array records the smallest locational code
on the corresponding processor (i.e. the ith element records
the smallest locational code on processor i). This table is
replicated on all processors. In our example (Figure 4(a)), a
locational code interval table contains three entries, record-
ing the locational codes of octant b, g, and k, respectively.

We use a locational code interval table to perform quick
inverse lookups. That is, given an arbitrary locational code,
we conduct a binary search in the locational code interval
table and find the interval index (i.e., processor id) of the
entry whose locational code is the largest among all those
that are smaller than the given locational code. Note that this
is a local operation and incurs no communication cost.

A locational code interval table is efficient in both space
and time. The memory overhead on each processor to
store an interval table is O(P ), where P is the number of
processors. Even when there are 1 million processors, the
memory footprint of the locational code lookup table is only
12 MB. Time-wise, the overhead of an inverse lookup is
O(logP ), the cost of a binary search.

3.1.4 Manipulating an octant. There are various sit-
uations when we need to manipulate an octant. For example,
we need to search for a neighboring octant when generating
a mesh. If the target octant is hosted on the same processor

where an operation is initiated, we use the standard pointer-
based octree algorithm [23] to traverse the local instance
to manipulate the octant. If the target octant is hosted on
a remote processor, we compute its locational code and
conduct a lookup using the locational code interval table to
find its hosting processor. We store the locational code of the
target octant and the intended operation in a request buffer
destined for the hosting processor. The request buffers are
later exchanged among processors. Each processor executes
the requests issued by its peers with respect to its local
octants. On the receiving end, we are able to locate an
octant using its locational code by reversing the procedure
of deriving a locational code from a tree structure (shown
in Figure 5). Without a locally computed and globally
unique address, such cross-processor operations would have
involved much more work.

3.2 Interfaces. There are two types of interfaces in the
Hercules system: (1) the interface to the underlying octree,
and (2) the interface between simulation components.

All simulation components manipulate the underlying
octree to implement their respective functions. For example,
the mesher needs to refine or coarsen the tree structure to
effect necessary spatial discretization. The solver needs
to attach runtime solution results to mesh nodes. The
visualization component needs to process the attached data.
In order to support such common operations efficiently, we
implement the backbone parallel octree in two abstract data
types (ADTs): octant t and octree t, and provide a
small application program interface (API) to manipulate the
ADTs. For instance, at the octant level, we provide functions
to search for an octant, install an octant, and sprout or prune
an octant. At the octree level, we support various tree traver-
sal operations as well as the initialization and adjustment of
the locational code lookup table. This interface allows us
to encapsulate the complexity of manipulating the backbone
parallel octrees within the abstract data types.

Note that there is one (and the only one) exception to
the cleanliness of the interface. We reserve a place-holder in
octant t, allowing a simulation component (e.g., a solver)
to install a pointer to a data structure where component-
specific data can be stored and retrieved. Nevertheless, such
flexibility does not undermine the robustness of the Hercules
system because any structural changes to the backbone
octree must still be carried out through a pre-defined API
call.

We have also designed binding interfaces between the
simulation components. However, unlike the octree/octant
interface, the inter-component interfaces can be clearly ex-
plained only in the context of the simulation pipeline. There-
fore, we defer the description of the inter-component in-
terfaces to the next section where we outline the core
algorithms of individual simulation components.

3.3 Algorithms. Engineering a complex parallel simu-
lation system like Hercules not only involves careful soft-
ware architectural design, but also demands non-trivial al-
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gorithmic innovations. This section highlights important
algorithm and implementation features of Hercules. We have
omitted many of the technical details.

3.3.1 Meshing and partitioning. We generate octree
meshes online in-situ [29]. That is, we generate an octree
mesh in parallel on the same processors where a solver and
a visualizer will be running. Mesh elements and nodes
are created where they will be used instead of on remote
processors. This strategy requires that mesh partitioning be
an integral part of the meshing component. The partitioning
method we use is simple [5, 11]. We sort all octants in
ascending locational code order, often referred to as the Z-
order [12], and divide them into equal length chunks in such
a way that each processor will be assigned one and only one
chunk. Because the locational ordering of the leaf octants
corresponds exactly to the pre-order traversal of an octree,
the partitioning and data redistribution often involve leaf
octants migrating only between adjacent processors. When-
ever data migration occurs, local instances of participating
processors are adjusted to maintain a consistent global data
structure. As shown in Section 4, this simple strategy works
well and yields almost ideal speedup for fixed-size problems.

The process of generating an octree-based hexahedral
mesh is shown in Figure 7. First, NEWTREE bootstraps a
small and shallow octree on each processor. Next, the tree
structure is adjusted by REFINETREE and COARSENTREE,
either statically or dynamically. While adjusting the tree
structure, each processor is responsible only for a small
area of the domain. When the adjustment completes, there
are many subtrees distributed among the processors. The
BALANCETREE step enforces the 2-to-1 constraint on the
parallel octree. After a balanced parallel octree is obtained,
PARTITIONTREE redistributes the leaf octants among the
processors using the space-filling curve partitioning tech-
nique. Finally and most importantly, EXTRACTMESH derives
mesh element and node information and determines the
various associations between elements and nodes. The
overall algorithm complexity of the meshing component is
O(N logE), where N and E are the numbers of mesh nodes
and elements, respectively.

NEWTREE REFINETREE COARSENTREE BALANCETREE PARTITIONTREE EXTRACTMESH

Octree and mesh handles 
to solver and visualizer

Upfront adaptation guided by 
material property or geometry

Online adaptation guided by  
solver’s output (e.g. error est.)

Figure 7: Meshing and partitioning component.

It should be noted that the parallel octree alone—though
scalable and elegant for locating octants and distributing
workloads—is not sufficient for implementing all meshing
functionality. The key challenge here is how to deal with
octants’ vertices (i.e., mesh nodes). We can calculate the
coordinates of the vertices in parallel and obtain a col-
lection of geometric objects (octants and vertices). But

by themselves, octants and vertices are not a finite ele-
ment mesh. To generate a mesh and make it usable to a
solver, we must identify the associations between octants
and vertices (mesh connectivity), and between vertices and
vertices, either on the same processor (hanging-to-anchored
dependencies) or on different processors (inter-processor
sharing information). Therefore, in order to implement
steps such as BALANCETREE and EXTRACTMESH, which
require capabilities beyond those offered by parallel octree
algorithms, we have incorporated auxiliary data structures
and developed several new algorithms such as parallel ripple
propagation and parallel octree bucket sorting [29].

As mentioned in Section 3.2, the interface between
simulation components provides the glue that ties the Her-
cules system together. The interface between the meshing
and solver components consists of two parts: (1) abstract
data types, and (2) callback functions. When meshing is
completed, a mesh abstract data type (mesh t), along with
a handle to the underlying octree (octree t), is passed
forward to a solver. The mesh t ADT contains all the
information a solver would need to initialize an execution
environment. On the other hand, a solver controls the
behavior of a mesher via callback functions that are passed
as parameters to the REFINETREE and COARSENTREE steps
at runtime. The latter interface allows us to perform runtime
mesh adaptation, which is critical for future extension of the
Hercules framework to support solution adaptivity.

3.3.2 Solving. Figure 8 shows the solver component’s
workflow. After the meshing component hands over control,
the INITENV step sets an execution environment by comput-
ing element-independent stiffness matrices, allocating and
initializing various local vectors, and building a communi-
cation schedule. Next, the DEFSOURCE step converts an
earthquake source specification to a set of equivalent forces
applied on mesh nodes. Then, a solver enters its main loop
(inner kernel) where displacements and velocities associated
with mesh nodes are computed for each simulation time
step (i.e., the COMPDISP step). If a particular time step
needs to be visualized, which is determined either a priori
or at runtime (online steering), the CALLVIS step passes
the control to a visualizer. Once an image is rendered,
control returns to the solver, which repeats the procedure
for the next time step until termination. The explicit wave
propagation solver has optimal complexity, i.e. O(N

4

3 ) This
stems from the fact that simply writing the solution requires
O(N

4

3 ) complexity, since O(N) mesh nodes are required
for accurate spatial resolution, and O(N

1

3 ) time steps for
accurate temporal resolution, which is of the order dictated
by the CFL stability condition.

The COMPDISP step (performing local element-wise
dense matrix computation, exchanging data between proces-
sors, enforcing hanging node constraints, etc.) presents no
major technical difficulty, since this inner kernel is by far
the most well studied and understood part. What is more
interesting is how the solver interacts with other simulation
components and with the underlying octree in the INITENV,
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DEFSOURCE, and CALLVIS steps.

INITENV DEFSOURCE COMPDISP

Octree and mesh 
handles from mesher

VIS STEP? CALLVIS DONE?

Octree handle

N N

Y Y

Figure 8: Solving component.

In the INITENV step, the solver receives an in-situ mesh
via an abstract data type mesh t, which contains such
important information as the number of elements and nodes
assigned to a processor, the connectivity of the local mesh
(element–node association, hanging-anchored node associa-
tion), and the sharing information (which processor shares
which local mesh nodes), and so forth. All initialization
work, including the setup of a communication schedule,
is thus performed in parallel without any communication
among processors.

Along with the mesh t ADT, the solver also receives a
handle to the backbone octree’s local instance octree t.
One of the two important applications of the octree t
ADT is to provide an efficient search structure for defining
earthquake sources (the DEFSOURCE step). We support
kinematic earthquake sources whose displacements (slips)
are prescribed. The simplest case is a point source. Note
that the coordinate of a point source is not necessarily
that of any mesh node. We implement a point source by
finding the enclosing hexahedral element of the coordinate
and converting the prescribed displacements to an equivalent
set of forces applied on the eight mesh nodes of the enclosing
element. For general cases of fault planes or arbitrary fault
shapes, we first transform a fault to a set of point sources and
then apply the technique for the single point source multiple
times. In other words, regardless of the kinematic source,
we must always locate the enclosing elements of arbitrary
coordinates. We are able to implement the DEFSOURCE step
using the octree/octant interface, which provides the service
of searching for octants.

The other important application of the octree t ADT
is to serve as a vehicle for the solver to pass data to the
visualization component. Recall that we have reserved a
place-holder in the octree t ADT. Thus, we allocate a
buffer that holds results from the solver (displacements or
velocities), and install the pointer to the buffer in the place-
holder. As new results are computed at each time step,
the result buffer is updated accordingly. Note that to avoid
unnecessary double buffering, we do not copy floating-
point numbers directly into the result buffer. Instead, we
store pointers (array offsets) to internal solution vectors and
implement a set of macros to manipulate the result buffer
(de-reference pointers and compute results). So from a
visualization perspective, the solver has provided a concise
data service. Once the CALLVIS step transfer the control to a
visualizer, the latter is able to retrieve simulation result data

from the backbone octree by calling these macros.4

3.3.3 Visualization. Simulation-time 3D visualization
has rarely been attempted in the past for three main reasons.
First, scientists are reluctant to use their supercomputing al-
locations for visualization work. Second, a data organization
designed for a simulation is generally unlikely to support
efficient visualization computations. Third, performing vi-
sualization on a separate set of processors requires repeated
movement of large amounts of data, which competes for
scarce network bandwidth and increases the complexity of
the simulation code.

UPDATEPARAM

Octree handle

RENDERIMAGE COMPOSITIMAGE SAVEIMAGE

Figure 9: Visualizing component.

Figure 10: A sequence of snapshot images of
propagating waves of 1994 Northridge earthquake.

By taking an online, end-to-end approach, we have been
able to incorporate highly adaptive parallel visualization into
Hercules. Figure 9 shows how the visualization component
works. First, the UPDATEPARAM step updates the viewing
and rendering parameters. Next, the RENDERIMAGE step
renders local data, that is, values associated with blocks
of hexahedral elements on each processor. The details on
the rendering algorithm can be found in [19, 32]. The
partially rendered images are then composited together in
the COMPOSITIMAGE step. We use scheduled linear image
compositing (SLIC) [24], which has proven to be the most
flexible and efficient algorithm. Previous parallel image
compositing algorithms are either not scalable or designed
for a specific network topology [2, 15, 18]. Finally, the
SAVEIMAGE step stores an image to disk. Figure 10 shows
a sequence of example images. The cost of the visualization
component per invocation is O(xyE

1

3 logE), where x,y

4When visualization does not need to be performed at a given
time step, no data access macros are called; thus no memory access
or computation overhead occurs.

8



PEs 1 16 52 184 748 2000
Frequency 0.23 Hz 0.5 Hz 0.75 Hz 1 Hz 1.5 Hz 2 Hz
Elements 6.61E+5 9.92E+6 3.13E+7 1.14E+8 4.62E+8 1.22E+9
Nodes 8.11E+5 1.13E+7 3.57E+7 1.34E+8 5.34E+8 1.37E+9

Anchored 6.48E+5 9.87E+6 3.12E+7 1.14E+8 4.61E+8 1.22E+9
Hanging 1.63E+5 1.44E+6 4.57+6 2.03E+7 7.32E+7 1.48+8

Max leaf level 11 13 13 14 14 15
Min leaf level 6 7 8 8 9 9
Elements/PE 6.61E+5 6.20E+5 6.02E+5 6.20E+5 6.18E+5 6.12E+5
Time steps 2000 4000 10000 8000 2500 2500
E2E time (sec) 12911 19804 38165 48668 13033 16709

Replication (sec) 22 71 85 94 187 251
Meshing (sec) 20 75 128 150 303 333
Solver (sec) 8381 16060 31781 42892 11960 16097
Visualization (sec) 4488 3596 6169 5528 558 *

E2E time/step/elem/PE (µs) 9.77 7.98 7.93 7.86 8.44 10.92
Solver time/step/elem/PE (µs) 6.34 6.48 6.60 6.92 7.74 10.52
Mflops/sec/PE 569 638 653 655 * *

Figure 11: Summary of the characteristics of the isogranular experiments. The entries marked as “*” are data
points that we have not yet been able to obtain due to various technical reasons.

represent the 2D image resolution and E is the number of
mesh elements.

The visualization component relies on the underlying
parallel octree for two purposes: (1) to retrieve simulation
data from the solver, and (2) to implement its adaptive
rendering algorithm. We have described the first usage in
the previous section. Let us now explain the second. To
implement a ray-casting based rendering algorithm, the vi-
sualization component needs to traverse the octree structure.
By default, all leaf octants intersecting a particular ray must
be processed in order to project a pixel. However, we
might not always want to render at the highest resolution,
i.e. at the finest level of the octree. For example, when
rendering hundreds of millions of elements on a small image
of 512 × 512 pixels, little additional detail is revealed if we
render at the highest level, unless a close-up view is selected.
Thus, to achieve better performance of rendering without
compromising image quality, we perform a view-dependent
pre-processing step to choose an appropriate octree level
before actually rendering the image [32]. Operationally, it
means that we need to ascend the tree structure and render
images at a coarser level. The small set of API functions that
manipulate the backbone octree (see Section 3.2) serves as a
building block for supporting such adaptive visualization.

4 Performance
In this section, we provide preliminary performance results
that demonstrate the scalability of the Hercules system.
We also describe interesting performance characteristics and
observations identified in the process of understanding the
behavior of Hercules as a complete simulation system.

The simulations have been conducted to model seismic
wave propagation during historical and postulated earth-
quakes in the Greater Los Angeles Basin, which comprises
a 3D volume of 100 × 100 × 37.5 kilometers. We report
performance on Lemieux, the HP AlphaServer system at the

Pittsburgh Supercomputing Center. The Mflops numbers
were measured using the HP Digital Continuous Profiling
Infrastructure (DCPI) [10].

The earth property model is the Southern California
Earthquake Center 3D community velocity model [20] (Ver-
sion 3, 2002), known as the SCEC CVM model. We query
the SCEC CVM model at high resolution offline and in
advance, and then compress, store and index the results in
a material database [25] (≈ 2.5GB in size). Note that this
is a one-time effort, and the database is reused by many
simulations. In our initial implementation, all processors
queried a single material database stored on a parallel file
system. But unacceptable performance led us to to modify
our implementation to replicate the database onto local disks
attached to each compute node prior to a simulation.

4.1 Isogranular scalability study. Our main interest
is understanding how the Hercules system performs as the
problem size and number of processors increase, maintaining
more or less the same problem size (or work per time step)
on each processor.

Figure 11 summarizes the characteristics of the isogran-
ular experiments. PEs indicates the number of processors
used in a simulation. Frequency represents the maximum
seismic frequency resolved by a mesh. Element, Nodes,
Anchored, and Hanging characterize the size of each mesh.
Max leaf level and Min leaf level represent the smallest and
largest elements in each mesh, respectively. Elements/PE is
used as a rough indicator of the workload per time step on
each processor. Given the unstructured nature of the finite
element meshes, it is impossible to guarantee a constant
number of elements per processor. Nevertheless, we have
contained the difference to within 10%. Time steps indicates
the number of explicit time steps executed. The E2E time
represents the absolute running time of a Hercules simulation
from the moment the code is loaded onto a supercomputer
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to the moment it exits the system. This time includes the
time of replicating a material database stored on a shared
parallel file system to the local disk attached to each compute
node (Replication), the time to generate and partition an
unstructured finite element mesh (Meshing), the time to
simulate seismic wave propagation (Solver), and the time to
create visualizations and output jpeg images (Visualization).
E2E time/step/elem/PE and Solver time/step/elem/PE are the
amortized cost per element per time step per processor for
end-to-end time and solver time, respectively. Mflops/sec/PE
stands for the sustained megaflops per second per processor.

Note that the simulations involve highly unstructured
meshes, with the largest elements 64 times as large in edge
size as the smallest ones. Because of spatial adaptivity of the
meshes, there are many hanging nodes, which account for
11% to 20% of the total mesh nodes.

A traditional way to assess the overall isogranular paral-
lel efficiency is to examine the degradation of the sustained
average Mflops per processor as the number of processors
increases. In our case, we achieve 28% to 33% of peak per-
formance on the Alpha EV68 processors (2 GFlops/sec/PE).
However, no degradation in sustained average floating-point
rate is observed. On the contrary, the rate increases as we
solve larger problems on larger numbers of processors (up
to 184 processors). This counter-intuitive observation can be
explained as follows: the solver is the most floating point-
intensive and time-consuming component; as the problem
size increases, processors spend more time in the solver ex-
ecuting floating-point instructions, thus boosting the overall
Mflops/s per processor rate.

To assess the isogranular parallel efficiency in a more
meaningful way, we analyze the running times. Figure 12
illustrates the contribution of each component of Hercules to
the total running time. One-time costs such as replicating
the material database and generating a mesh are inconse-
quential and are almost invisible in the figure.5 Among
the recurring costs, visualization has lower per-time step
algorithmic complexity (O(xyE

1

3 logE)) than that of the
solver (O(N)). (N , the number of mesh nodes, is of the
order of E, the number of mesh elements, in an octree-based
hexahedral mesh.) Therefore, as both the problem size and
number of processors increase, the solver time overwhelms
the visualization time by greater and greater margins.

Figure 13 shows the trends of the amortized end-to-
end running time and solver time per time step per element
per processor. Although the end-to-end time is always
higher than the solver time, as we increase the problem
size, the amortized solver time approaches the end-to-end
time due to the solver’s asymptotic dominance. The key
insight here is that, with careful design of parallel data

5For the 1.5 Hz (748-PE run) and 2 Hz (2000-PE run) cases,
we have computed just 2,500 time steps. Because of this, the
replication and meshing costs appear slightly more significant in
the figure than they would had a full-scale simulation of 20,000
time steps been executed. Also note that the 2000-PE case does not
include the visualization component.

0%

20%

40%

60%

80%

100%

1PE 16PE 52PE 184PE 748PE 2000PE

Replicating Meshing Solving Visualizing

Figure 12: The percentage contribution of each
simulation component to the total running time.

structures and algorithms for the entire simulation pipeline,
the limiting factor for high isogranular scalability on a large
number of processors is the scalability of the solver proper,
rather than front and back end components. Therefore,
it is reasonable to use the degradation in the amortized
solver time to measure the isogranular efficiency of the
entire simulation pipeline (in place of the end-to-end time,
which in fact implies greater than 100% efficiency). As
shown in Figure 11, the solver time per step per element per
processor is 6.34 µs on a single PE and 7.74 µs on 748 PE.
Hence, we obtain an isogranular parallel efficiency of 81%,
a good result considering the high irregularity of the meshes.
The 2000-PE data point shown in the figure corresponds to
solution of a 1.37 billion node problem without visualization.
In this case, we achieve an isogranular parallel efficiency of
60%.
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Figure 13: The amortized running time per per
step per element per processor. The top curve
corresponds to the amortized end-to-end running time
and the lower corresponds to the amortized solver
running time.

4.2 Fixed-size scalability study. In this set of ex-
periments, we investigate the fixed-size scalability of the
Hercules system. That is, we fix the problem size and solve
the same problem on different numbers of processors to
examine the performance improvement in running time.

We have conducted three sets of fixed-size scalability
experiments, for small size, medium size, and large size
problems, respectively. The experimental setups are shown
in Figure 14. The performance results are shown in Fig-
ure 15. Each column represents the results for a set of fixed-
size experiments. From left to right, we display the plots for
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PEs 1 2 4 8 16 32 64 128 256 512 1024 2048
Small case (0.23 Hz, 0.8M nodes) x x x x x
Medium case (0.5 Hz, 11M nodes) x x x x x
Large case (1 Hz, 134M nodes) x x x x x

Figure 14: Setup of fixed-size speedup experiments. Entries marked with “x” represent experiment runs.
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Figure 15: Speedups of fixed-size experiments. The horizontal axes represent the number of processors. The
vertical axes represent the running time in seconds. The first row shows the end-to-end running time; the second
the meshing and partitioning time; the third the solver time; and the fourth the visualization time.

the small, medium, and large cases, respectively.
The first row of the plots shows that Hercules, as a sys-

tem for end-to-end simulations, scales well even for fixed-
size problems. As we increase the numbers of processors
(to 16 times as many for all three cases), the end-to-end
running times improve accordingly. The actual running time
curve tracks the ideal speedup curve closely. The end-to-end

parallel efficiencies are 66%, 76%, and 64%, for the small
case (16 PE vs. 1 PEs), medium case (128 PEs vs. 8 PEs),
and large case (2048 PEs vs. 128 PEs), respectively.

The second row shows the performance of the mesh-
ing/partitioning component only. Although not perfect, this
component achieves reasonable speedups while running on
a large number of processors. For earthquake wave propa-
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gation simulations, meshes are static and are only generated
just once prior to computation. Therefore, the cost of mesh-
ing and partitioning is dwarfed by thousands of simulation
time steps, provided mesh generation is reasonably fast and
scalable.

The third row of Figure 15 shows a somewhat surprising
result: the solver achieves almost ideal speedup on hundreds
to thousands of processors, even though the partitioning
strategy we used (dividing a Z-ordered sequence of elements
into equal chunks) is rather simplistic. In fact, the solver’s
parallel efficiency is 97%, 98%, and 86%, for the small case,
medium case, and large case, respectively. Since solving is
the most time-consuming component of the Hercules sys-
tem, its high fixed-size parallel efficiency has improved the
performance of the entire end-to-end system in a significant
way.

The speedup of the visualization component, as shown
in the fourth row of Figure 15, is, however, less satisfactory,
even though the general trend of the running time indeed
shows improvement as more processors are used. Because
this component is executed at each visualization time step
(usually every 10th solver time step), the less-than-optimal
speedup has a much larger impact on the overall end-to-
end performance than the meshing/partitioning component.
The visualization parallel efficiency is actually 44%, 36%,
and 38%, for the small case, medium case, and large case,
respectively.

We attribute this performance degradation to the space-
filling curve based partitioning strategy, which assigns an
equal number of neighboring elements to each processor, a
strategy that is optimal for the solver. However, this strategy
is suboptimal for the visualization component, since the
workload on each processor (Figure 16(a)) is proportional
to both the number and the size of the local elements to
be rendered. Therefore, different processors may have
dramatically different block sizes to render, as shown in
Figure 16(b). The light blocks represent elements assigned
to one processor and the dark blocks another processor.
As a result, the workload can be highly unbalanced for
the RENDERIMAGE and COMPOSITIMAGE steps, especially
when larger numbers of processors are involved. To remove
this performance bottleneck, a viable approach is to use a
new hybrid rendering scheme that balances the workload
dynamically by taking into account the cost of transferring
elements versus that of pixels [9]. An element is rendered
locally only if the rendering cost is lower than the cost
of sending the resulting projected image to the processor
responsible for compositing the image. Alternatively, we can
re-evaluate the space-filling curve based partitioning strategy
and develop a new scheme that better accommodates both the
solver and the visualization components. Striking a balance
between the data distributions for the two is an inherent issue
for parallel end-to-end simulations.

(a) (b)

Figure 16: Workload distribution. (a) Elements as-
signed on one processor. (b) Unbalanced visualization
workload on two processors.

5 Conclusion
We have demonstrated that the bottlenecks associated with
front-end mesh generation and back-end visualization can be
eliminated for ultra-large scale simulations through careful
design of parallel data structures and algorithms for end-
to-end performance and scalability. By eliminating the
traditional, cumbersome file interface, we have been able
to turn “heroic” runs—large-scale simulations that often re-
quire weeks of preparation and post-processing—into daily
exercises that can be launched readily on parallel supercom-
puters.

Our new approach calls for new ways of designing
and implementing high-performance simulation systems.
Besides data structures and algorithms for each individual
simulation components, it is important to account for the
interactions between these components in terms of both
control flow and data flow. It is equally important to
design suitable parallel data structures and runtime systems
that can support all simulation components. Although we
have implemented our methodology in a framework that tar-
gets octree-based finite element simulations for earthquake
modeling, we expect that the basic principles and design
philosophy can be applied in the context of other types of
large-scale physical simulations.

The end-to-end approach calls for new ways of assessing
parallel supercomputing implementations. We need to take
into account all simulation components, instead of merely
the inner kernels of solvers. Sustained floating point rates
of inner kernels can help explain achieved faster run times.
But they should not be used as the only indicator of high
performance or scalability. No clock time—used either by
processors, disk, network, or humans—should be excluded
in the evaluation of the effectiveness of a simulation system.
After all, overall turnaround time is the most important
performance metric for real-world scientific and engineering
simulations.
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